Topic 2-
Matrices

HW 2 MATRICES
Def: A matrix is a rectangular array of numbers. If M is a matrix and it has m rows and n columns then we say that M is an $\underbrace{m \times n}_{\text {read. }}$ matrix.

Abstractly we can write an $m \times n$ matrix like this:

$$
M=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

where $a_{i j}$ is the entry in the i-th row and j-th column.

Ex:

$$
\begin{aligned}
& M=\left(\begin{array}{cc}
1 & 5 \\
3 & -2
\end{array}\right)=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \\
& a_{11}=1 \\
& a_{12}=5 \\
& a_{21}=3 \\
& a_{22}=-2
\end{aligned}
$$

M is a $2 x^{2}$ matrix.

Ex:

$$
\begin{aligned}
M= & \left(\begin{array}{llll}
5 & 0 & 10 & 7
\end{array}\right) \\
& \left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14}
\end{array}\right)
\end{aligned}
$$

M is a 1×4 matrix.

$$
\begin{aligned}
& a_{11}=5 \\
& a_{12}=0 \\
& a_{13}=10 \\
& a_{14}=7
\end{aligned}
$$

Note: You can Use commas if you want to make it clearer. Like this:

$$
M=(5,0,10,7)
$$

Note: Sometimes we want to think of a vector as a matrix.
Suppose we have $\vec{v}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ in \mathbb{R}^{n}.
We can think of \vec{v} as an

$$
n \times 1 \text { matrix }\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)
$$

or we can think of \vec{v} as a

$$
\text { we can think of matrix }\left(a_{1} a_{2} \cdots a_{n}\right)
$$

$$
\text { Ex: } \vec{V}=\left\langle 1,5, \frac{1}{2}\right\rangle
$$

Can think of \vec{v} as $\left(\begin{array}{c}1 \\ 5 \\ 1 / 2\end{array}\right)$

$$
\text { or }\left(\begin{array}{lll}
1 & 5 & \frac{1}{2}
\end{array}\right)
$$

Def: Let A and B be
$m \times n$ matrices.
[They have the same size]
Let

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{12} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & & \vdots \\
b_{m 1} & b_{m 2} & \cdots & b_{m n}
\end{array}\right)
$$

(1) We define $A+B$ to be the following $m \times n$ matrix:

$$
\left.\begin{array}{l}
f_{0} l l o w i n g \\
m \times n \\
m
\end{array}\right)\left(\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} \cdots & a_{m n}+b_{m n}
\end{array}\right), ~ \$
$$

(2) We define $A-B$ to be the following $m \times n$ matrix:
(3) If α is in \mathbb{R}, the scalar product $\propto A$ is defined to be the $m \times n$ matrix:

$$
\alpha A=\left(\begin{array}{cccc}
\alpha a_{11} & \alpha a_{12} & \cdots & \alpha a_{1 n} \\
\alpha a_{21} & \alpha a_{22} & \cdots & \alpha a_{2 n} \\
\vdots & \vdots & & \vdots \\
\alpha a_{m 1} & \alpha a_{m 2} & \cdots & \alpha a_{m n}
\end{array}\right)
$$

$E X_{0}^{\circ}$

$$
\underbrace{\left(\begin{array}{cc}
0 & 5 \\
3 & 1
\end{array}\right)}_{2 \times 2}+\underbrace{\frac{\text { Ex: }}{\left(\begin{array}{cc}
2 & -1 \\
6 & 7
\end{array}\right)}=\left(\begin{array}{cc}
0+2 & 5-1 \\
3+6 & 1+7
\end{array}\right)}_{\text {same size }}=\left(\begin{array}{ll}
2 & 4 \\
9 & 8
\end{array}\right)
$$

Ex:

$$
\underbrace{\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)}_{4 \times 1}-\underbrace{\left(\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right)}_{4 \times 1}=\left(\begin{array}{ll}
1 & -2 \\
1 & -3 \\
1 & 4 \\
1 & -5
\end{array}\right)=\left(\begin{array}{l}
-1 \\
-2 \\
-3 \\
-4
\end{array}\right)
$$

$$
\underbrace{}_{\text {same size }}
$$

Ex: $\underbrace{\left(\begin{array}{ll}1 & 5 \\ 3 & 2\end{array}\right)}_{2 x^{2}}+\underbrace{\left(\begin{array}{ll}1 & 3 \\ 5 & 7 \\ 1 & 8\end{array}\right)}_{3 \times 2}$
this sum is undefined since the matrices dent have the same size.

Ex:

$$
10\left(\begin{array}{cc}
1 & 3 \\
-1 & 5
\end{array}\right)=\left(\begin{array}{cc}
10 & 30 \\
-10 & 50
\end{array}\right)
$$

Def: Let A be an $m \times r$ matrix and B be an $r \times n$ matrix. We define the product of A and B, denoted by $A B$, as the man matrix C whose entry at row i and column j is defined to be the dot product
of the i-th row of A and the j-th column of B.

Ex: Calculate $A B$, if possible, where

$$
A=\underbrace{\underbrace{2 \times 2}_{\begin{array}{c}
1 \\
-1
\end{array}} \begin{array}{l}
\text { equal, so } A B \\
\text { is defined }
\end{array}}_{A B \text { will be } 2 \times 3} \text { and } B=\underbrace{\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 0
\end{array}\right)}_{2 \times 3}
$$

(row 1 of A).

(column 1 of B) (column 2 of B) (column 3 of B)

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
(1)(1)+(2)(0) & (1)(2)+(2)(1) & (1)(-1)+(2)(0) \\
(-1)(1)+(0)(0) & (-1)(2)+(0)(1) & (-1)(-1)+(0)(0)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 4 & -1 \\
-1 & -2 & 1
\end{array}\right) .
\end{aligned}
$$

$A B$

Ex: Using the same matrices can we calculate $B A$?
$B \underbrace{A}_{2 \times 2}$ Since $3 \neq 2, B A$
$\underset{\substack{2 \times 2}}{2 \times 2}$ is not defined.
You can also see this if you tried to multiply them.

$$
B A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
-1 & 0
\end{array}\right)
$$

(row 1 of $B) \cdot($ Column 1 of A)
$=\left(\begin{array}{c}\left(\begin{array}{cc}1 & 2\end{array}-1\right) \cdot\binom{1}{-1}\end{array}\right)$
You can't do this dot product since the sizes aren't the same.

Ex: Let

$$
\begin{aligned}
& \text { Ex: Let } \\
& A=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) \text { and } B=\left(\begin{array}{lll}
0 & 1 & -3
\end{array}\right) \\
& \Delta R \text { if possible. }
\end{aligned}
$$

Calculate $\underbrace{A}_{3 \times 1} \underbrace{B}_{1 \times 3}$ if possible.

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
0 & 1 & -3 \\
0 & 2 & -6 \\
0 & -1 & 3
\end{array}\right)
\end{aligned}
$$

Ex: Let

$$
\begin{aligned}
& \text { EX: Let } \\
& A=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right) \text { and } B=\left(\begin{array}{lll}
0 & 1 & -3
\end{array}\right)
\end{aligned}
$$

as before. Can we calculate $B A$?

$$
\begin{aligned}
& =((0)(1)+(1)(2)+(-3)(-1)) \\
& =(5)+B A \text { is } \mid \times 1
\end{aligned}
$$

Note:
In the previous examples when $A=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ and $B=\left(\begin{array}{lll}0 & 1 & -3\end{array}\right)$ we saw that $A B \neq B A$
(x) (x)

In general, $A B=B A$ is NoT always true for matrices

Def: Let A be an $m \times n$ matrix. The transpose of A, denoted by A^{\top}, is defined to be the $n \times m$ matrix that results from interchanging the rows of columns of A.
That is, the i-th column of A^{\top} is the $i-t h$ row of A.
Similarly, the j-th row of A^{\top} is the j-th column of A.

Some people write A^{t} instead of A^{\top}

Ex: Let

$$
\begin{aligned}
& \left.A=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right)\right] \\
& A^{\top}=\left(\begin{array}{ccc}
1 & \downarrow & \checkmark \\
1 & 5 & 9 \\
3 & 6 & 10 \\
4 & 8 & 11 \\
4
\end{array}\right) 4 \times 3
\end{aligned}
$$

You could also have treed the columns of A into the rows of A^{\top} and you'd get the same answer

Ex:

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & -1 & \pi \\
\sqrt{2} & 1 / 2 & 5 \\
10 & 7 & -2
\end{array}\right) \quad 3 \times 3 \\
& 0
\end{aligned}
$$

Def: The $m \times n$ zero matrix is the $m \times n$ matrix where every entry is zero.
We denote it by $O_{m \times n}$ or just by O if we don't want to mention the size.

$$
\begin{aligned}
& \frac{\text { Ex: }}{O_{2 \times 2}}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad O_{4 \times 1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& O_{5 \times 3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Ex:
Let $A=\left(\begin{array}{cc}1 & 5 \\ 7 & 2 \\ 3 & -1\end{array}\right)$
Then,

$$
\text { Then, } \begin{aligned}
A+O_{3 \times 2} & =\left(\begin{array}{cc}
1 & 5 \\
7 & 2 \\
3 & -1
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & 5 \\
7 & 2 \\
3 & -1
\end{array}\right)=A
\end{aligned}
$$

Similarly,

$$
O_{3 \times 2}+A=A
$$

Def: The $n \times n$ identity matrix, denoted by I_{n} [or just I when we den't want to or need to say the size ,
is the $n \times n$ matrix with 1 's along the main diagonal and O's everywhere else.

Ex:

$$
\begin{aligned}
& I_{1}=\left(\begin{array}{ll}
1
\end{array}\right) \\
& I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& I_{4}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

and so on.

Ex: Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) \leftarrow 2 \times 2$ (23)
Consider

$$
\begin{aligned}
& \text { insider } \\
& I=I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

We have that

$$
\begin{aligned}
& \text { We have that } \left.\begin{array}{l}
\text { A } I=\underbrace{\begin{array}{ll}
\left(\begin{array}{ll}
1 & 2
\end{array}\right) \cdot\binom{1}{0} & \left(\begin{array}{ll}
1 & 2
\end{array}\right) \cdot\binom{0}{1} \\
& =\left(\begin{array}{ll}
3 & 4
\end{array}\right) \cdot\binom{1}{0}
\end{array}\left(\begin{array}{ll}
3 & 4
\end{array}\right) \cdot\binom{0}{1}}_{\underbrace{\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)}_{\text {answer is } 2 \times 2} \underbrace{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)}_{2 \times 2}}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{ll}
(1)(1)+(2)(0) & (1)(0)+(2)(1) \\
(3)(1)+(4)(0) & (3)(0)+(4)(1)
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=A
\end{aligned}
$$

So, $A I_{2}=A$.
You can also calculate $\frac{I_{2}}{2 \times 2} \underbrace{A}_{2 \times 2}$ which is defined and you will get $I_{2} A=A$.

Ex:
Let $A=\left(\begin{array}{ccc}1 & 3 & \pi \\ -1 & 2 & -2\end{array}\right)-2 \times 3$
Note that

$$
\begin{aligned}
& \underbrace{I_{2}}_{2 \times 2} \underbrace{A}_{2 \times 3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 3 & \pi \\
-1 & 2 & -2
\end{array}\right) \\
& =\left(\begin{array}{lll}
\left(\begin{array}{lll}
1 & 0
\end{array}\right) \cdot\binom{1}{-1} & (10
\end{array}\right) \cdot\binom{3}{2}\left(\begin{array}{ll}
1 & 0
\end{array}\right) \cdot\binom{\pi}{-2} . \\
& =\left(\begin{array}{ccc}
1 & 3 & \pi \\
-1 & 2 & -2
\end{array}\right)=A
\end{aligned}
$$

Note that $\underset{2 \times 3}{A} \underbrace{I_{2}}_{2 \times 2}$ is not
But if you calculate

$$
\begin{aligned}
& \text { But if you calcula } \\
& \underbrace{A}_{2 \times 3} \underbrace{I_{3}}_{3}=\left(\begin{array}{ccc}
1 & 3 & \pi \\
-1 & 2 & -2
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
&==\left(\begin{array}{ccc}
1 & 3 & \pi \\
-1 & 2 & -2
\end{array}\right)=A
\end{aligned}
$$

you fill in

So, $A I_{3}=A$.

Theorem:
Let A, B, C be matrices and let α, β be real numbers.
Then the following are

$$
\begin{aligned}
& \alpha=\text { alpha } \\
& \beta=\text { beta }
\end{aligned}
$$

true where we will assume that the sizes of the matrices are such that the operations are defined:
(1) $A+B=B+A$
(2) $A+(B+C)=(A+B)+C$
(3) $A(B C)=(A B) C$
(4) $A(B+C)=A B+A C$
(5) $(B+C) A=B A+C A$
(6) $A(B-C)=A B-A C$
(7) $(B-C) A=B A-C A$
(8) $\alpha(B+C)=\alpha B+\alpha C$
(9) $\alpha(B-C)=\alpha B-\alpha C$
(10) $(\alpha+\beta) A=\alpha A+\beta A$
(ii) $(\alpha-\beta) A=\alpha A-\beta A$
(12) $\alpha(\beta A)=(\alpha \beta) A$
(13) $\alpha(A B)=(\alpha A) B=A(\alpha B)$
(14) $\left(A^{\top}\right)^{\top}=A$
(15) $(A+B)^{\top}=A^{\top}+B^{\top}$
(16) $(A-B)^{T}=A^{\top}-B^{\top}$
(17) $(\alpha A)^{\top}=\alpha A^{\top}$
(18) $(A B)^{\top}=B^{\top} A^{\top} \leftarrow$
note the reversal of the order
(19) If A is $m \times n$, then

$$
A I_{n}=A
$$

(20) If A is $m \times n$, then

$$
I_{m} A=A
$$

(21) If A is $m \times n$, then

$$
A-A=O_{m \times n}
$$

(22) If A is $m \times n$, then

$$
A+O_{m \times n}=O_{m \times n}+A=A
$$

Lets prove part (5) of the previous theorem for 2×2 matrices.
[This is HW 2-Part 2 \#|(a)]
Suppose that A, B, C are 2×2 matrices. \qquad Prove that

$$
\begin{aligned}
& \text { ove that } \\
& (B+C) A=B A+C A] \begin{array}{l}
\text { What } \\
\text { you } \\
\text { need } \\
\text { to show }
\end{array}
\end{aligned}
$$

proof:

$$
\frac{\text { proof: }}{\text { Let } A, B, C} \text { be } 2 \times 2
$$ matrices.

$$
\begin{aligned}
& \text { Then, } \\
& A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), B=\left(\begin{array}{cc}
e & f \\
g & h
\end{array}\right), C=\left(\begin{array}{ll}
i & j \\
k & l
\end{array}\right)
\end{aligned}
$$

Then, where $a, b, c, d, e, f, g, h, i, j, k, l$ are real numbers.

Then,

$$
\begin{aligned}
& (B+C) A=\underbrace{\left.\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right)+\left(\begin{array}{ll}
i & j \\
k & l
\end{array}\right)\right]}_{\begin{array}{c}
\text { do first because } \\
\text { of parentheses }
\end{array}}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& =\underbrace{\left(\begin{array}{ll}
e+i & f+j \\
g+k & h+l
\end{array}\right)}_{\underbrace{2 \times 2}_{\text {answer }} \underbrace{2} 2 x^{2}} \underbrace{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)}_{2 x^{2}} \\
& \left.\left.=\left(\begin{array}{ll}
(e+i & f+j
\end{array}\right) \cdot\binom{a}{c} \quad\left(\begin{array}{ll}
e+i & f+j
\end{array}\right) \cdot\binom{b}{d}\right)\left(\begin{array}{l}
a \\
b \\
d
\end{array}\right)\right) \\
& =\left(\begin{array}{ll}
(e+i) a+(f+j) c & (e+i) b+(f+j) d \\
(g+k) a+(h+l) c & (g+k) b+(h+l) d
\end{array}\right)
\end{aligned}
$$

$$
=\left(\begin{array}{ll}
e a+i a+f c+j c & e b+i b+f d+j d \tag{*}\\
g a+k a+h c+l c & g b+k b+h d+l d
\end{array}\right)
$$

$$
\begin{aligned}
& \text { We also have that } \\
& B A+C A=\underbrace{\underbrace{}_{\text {answer is }} 2 \times 2}_{\underbrace{\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)}_{\text {answer is } 2 \times 2} \underbrace{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)}}+\underbrace{\underbrace{a}_{2 \times 2} \begin{array}{ll}
a & b \\
c & d
\end{array})}_{\left.\begin{array}{ll}
i & j \\
k & b
\end{array}\right)} \\
& =\left(\begin{array}{ll}
(e f) \cdot\binom{a}{c} & (e f) \cdot\binom{b}{d} \\
(g h) \cdot\binom{a}{c} & (g h) \cdot\binom{b}{d}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{ll}
e a+f c & e b+f d \\
g a+h c & g b+h d
\end{array}\right)+\left(\begin{array}{cc}
i a+j c & i b+j d \\
k a+l c & k b+l d
\end{array}\right) \\
& =\left(\begin{array}{ll}
e a+f c+i a+j c & e b+f d+i b+j d \\
g a+h c+k a+l c & g b+h d+k b+l d
\end{array}\right)(* *)
\end{aligned}
$$

We can see that (*) equals (**).

Thus,

$$
(B+C) A=B A+C A \text {. }
$$

other ways: QED, $\square \leftrightarrow$ (end of proof symbol)

Let's prove part (15) for 3×2 matrices.
[This is Hwy 2 -Part $2 \# \mid(f)$]
Let A and B be 3×2 matrices. Prove that

$$
\left.\begin{array}{l}
\text { love that } \\
(A+B)^{\top}=A^{\top}+B^{\top}
\end{array}\right] \begin{aligned}
& \text { Need } \\
& \text { to } \\
& \text { show }
\end{aligned}
$$

proof:
Let A and B be $3 \times^{2}$ matrices. \int objects

Then,

$$
A=\left(\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
g & h \\
i & j \\
k & l
\end{array}\right)
$$

where $a, b, c, d, e, f, g, h, i, j, k, l$ are real numbers.

We have that

$$
\begin{aligned}
& \text { We have that } \\
& (A+B)^{\top}=(\underbrace{\left(\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right)+\left(\begin{array}{ll}
g & h \\
i & j \\
k & l
\end{array}\right)}_{\begin{array}{c}
\text { add first } \\
\text { because of of antheses }
\end{array}})^{\top} \\
& =\left(\begin{array}{lll}
a+9 & b+h \\
c+i & d+j \\
e+k & f+l
\end{array}\right)^{\top}=\left(\begin{array}{lll}
a+g & c+i & e+k \\
b+h & d+j & f+l
\end{array}\right) \\
& =\left(\begin{array}{lll}
a & c & e \\
b & d & f
\end{array}\right)+\left(\begin{array}{lll}
9 & i & k \\
h & j & l
\end{array}\right) \\
& =\left(\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right)^{\top}+\left(\begin{array}{ll}
g & h \\
i & j \\
k & l
\end{array}\right)^{\top} \\
& =A^{\top}+B^{\top}
\end{aligned}
$$

HW 2 -Past 2
(2) (a) Suppose that A, B, C, D are $n \times n$ matrices. Use the properties from class to show that

$$
\begin{aligned}
& \text { properties from class to } \\
& (A+B)(C+D)=A C+A D+B C+B D \\
& \text { proof: Let } A, B, C, D
\end{aligned}
$$

proof: Let A, B, C, D be $n \times n$ matrices. Then,

$$
\frac{1}{(M+N) X=M X+N X}
$$

property (s) from class)

